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Abstract

How was Poincaré’s conventionalism connected to his relationism? How, in other words, is
it the case that the basic principles of geometry and mechanics are, ultimately, freely chosen
conventions and that, at the same time, science reveals to us the structure of the world? This
lengthy study aims to address these questions by setting Poincaré’s philosophy within its his-
torical context and by examining in detail Poincaré’s developing views about the status and
role of conventions in science and the status and role of relations in science. It is argued that
Poincaré was a neither a rampant conventionalist (as Édouard Le Roy was arguing) nor a pure
structuralist (as Bertrand Russell was urging). But he was both a conventionalist and a rela-
tionist, aiming to delineate a position which allowed room for both freely, but not arbitrarily,
chosen constitutive principles of science and the acquisition of objective, though, relational
knowledge of the natural world.
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1 Introduction

Henri Poincare’s La Science et l’Hypothése was translated into English in 1905.
One of the first reviews – published already in 1905 – was by Bertrand Russell.
After praising Poincaré for his “power of co-ordinating the whole domain of math-
ematics and physics in a single system of ideas” (1905, p. 412), Russell – in this
short by pointed review – put forward the two main interpretations of Poincaré’s
thought that subsequently became standard. Poincaré was a conventionalist and a
structuralist.

According to Russell, Poincaré argued that geometry is wholly conventional
and that the principles of mechanics are definitions. He rather quickly dismissed
this view by taking the line that conventions are merely hypotheses which have
been willingly withdrawn from empirical testing and claimed that they were not
really necessary qua a different epistemic category.1 Interestingly, he spent more
time explaining that for Poincaré “science teaches us, not about things in them-
selves, but about their relations” (ibid.). As Russell understood Poincaré’s main
thesis, “if a really exists, a statement about a has no meaning unless it asserts a
relation to a b which also really exists” (ibid. p. 417). His prime disagreement with
Poincaré was that he took it that statements about qualities of real things are not
devoid of meaning but simply unknowable. But apart from that, Russell endorsed
this relationist reading of Poincaré and made two important points. The first is
that it is by holding fast to relations that science “manages, on an empirical basis,
to construct a world so different from that of perception” (ibid.). For him, as well
as for Poincaré, a key problem of philosophy of science was to explain how the ab-
stract structure of a theory in mathematical physics gets connected with the world
of experience and as Russell briefly noted in this review, the contact is by sharing
structure and not by sharing any qualitative character. Yet the second point Russell
made was pushing relationism to a certain direction, which we may call pure struc-
turalism. Russell, as is well known, were to develop this view later on (cf. Russell
1927).2 In the review, he put the suggestion thus:

We may push the theory further and say that in general even the relations are for the
most part unknown, and what is known are properties of the relations, such as are
dealt with by mathematics. (1905, p. 417)

Pure structuralism is the view that only the formal properties of the relations
among things are known; that science can reveal only them, and not what these
relations are. Hence, the contact between the abstract theories of mathematical

1Russell had engaged in a debate with Poincaré on the foundations of geometry and had aleady
cirticised geometrical conventionalism. See Poincaré (1899, 1900b); Russell (1899); and Gray (2013,
pp. 76–82).

2For more on Russell’s structuralism and the famous Newman problem that brought it down,
see Demopoulos and Friedman (1985) and Psillos (2001).
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physics and the world of experience is not just structural, but purely structural,
meaning that they share formal structure and nothing else. According to Russell,
this was Poincaré’s view too. But as we shall see, it was not.

Russell’s review was forgotten, I guess, because subsequently the two strands
of Poincare’s philosophy followed distinct interpretative paths. The convention-
alist interpretation became the dominant.3 Actually, it seems that it is only fairly
recently, thanks mostly to the work of Jersy Giedymin (1982), Elie Zahar (1995,
2001) and John Worrall (1989) that the structuralist interpretation acquired cur-
rency. Many philosophers, including myself, have adopted the line that Poincaré
was a structural realist – or at least a precursor of structural realism. But was he,
really? More importantly: how was his conventionalism related to his relation-
ism? How, in other words, is it the case that the basic principles of geometry and
mechanics are, ultimately, freely chosen conventions and that, at the same time,
science reveals to us the structure of the world?4

This lengthy study aims to address these questions by examining in detail
Poincaré’s developing views about the status and role of conventions in science
and the status and role of relations in science. Here is the road map. Section 2
presents the case for geometrical conventionalism. It is argued that Poincaré de-
veloped his conception of convention in an attempt to delineate a new epistemic
category, which is occupied by some principles (of geometry and of mechanics)
that cannot be taken to be either hypotheses or fitting in one of the three Kan-
tian categories (synthetic a priori; analytic a priori; synthetic a posteriori). It is
also argued that because of the way geometrical space is constructed, it is related
to sensible space only ‘up to isomorphism’ and acquires empirical content only
because of the fortunate event that there are empirical (solid) bodies which are
similar to the geometrical ones. Section 3 presents the reasons for extending his
conventionalism to the principles of mechanics and the reasons why he also limits
his conventionalism to geometry and mechanics. It is noted that Poincaré devises
a method to split the content of empirical claims into two propositions, one ex-
pressing a convention and another capturing its proper empirical content; he uses
this method to show how conventions are not true by sheer stipulation (since they
make ‘some kind of contact’ with experience) and yet they are freely chosen by
the scientists. Section 4 compares geometrical conventionalism and physical con-
ventionalism and argues that though the processes that lead to them are different
(top-down vs. bottom-up) the conventions have the same epistemic status. Section

3See Stump (1989) and Ben-Menahem (2006). A recent important collection of essays on
Poincaré’s philosophy is De Paz and DiSalle (2014).

4 In his magnificent work, Jeremy Gray (2013) does discuss the conventionalist interpretation
(pp. 526-529) and the structural realist interpretation (pp. 534-542) but unfortuntely he does not
discuss their connection. Instead, he prefers to offer another interpretation of Poincaré along the
lines of Kripke’s interpretation of Wittgenstein on rule-following.
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5 presents two important reactions to his conventionalism by Federico Enriques
(who argued that conventions are not necessary) and Édouard Le Roy (who ar-
gued that all science is conventional). This section sets the stage for the discussion
of Poincaré’s structuralism in section 6. Poincaré’s structuralism is better under-
stood as a form of relationism. It is argued that there were three motivations for
Poincaré’s relationism. The first stems from the very nature of mathematical rep-
resentation in science; the second comes from the need to ground objectivity in
science; and the third is related to lessons drawn from the history of science. It
is also argued that relationism mitigates Poincaré’s conventionalism and helps him
block the charge that scientific theories are simply networks of conventions resem-
bling Penelope’s web.

2 The case for geometrical conventionalism

Poincaré’s first article on non-Euclidean geometries was published in 1887 and
was entitled Sur les hypothèses fondamentales de la géométrie. This was an allusion to
Riemann’s seminal “On the Hypotheses which lies at the Bases of Geometry”. In
his own article Poincaré examined the three plane geometries of constant curvature
and, based on Lie’s group-theoretic approach, showed their common assumptions
and their different groups of transformations. But his main objective was not tech-
nical – though the paper was technical. He intended to take issue with the claim
that at the basis of Geometry lie hypotheses. Euclid’s fifth axiom was precisely a
postulate, which however could be consistently denied by the non-Euclidean ge-
ometries of Lobachevski and Riemann. Given the Kantian trichotomy between
analytic judgements, synthetic a priori judgements and experimental facts (empir-
ical propositions), the ‘hypotheses’ that lie at the basis of geometry fit in none of
them. They are not analytic truths like the principle ‘two quantities which are
equal to a third one, they are equal to each other’. They are not synthetic a priori
judgements since we can conceive their negation; that is, they are not necessarily
true. Finally, they are not experimental facts, because if they were considered such,
geometry would no longer be an exact science; it would be subject to constant
empirical revision.

2.1 From hypotheses to conventions

It is noteworthy that in this article (in 1887) Poincaré does not yet call con-
ventions the indemonstrable propositions of geometry. He only points out that
they do not fit within the three Kantian categories. Yet he does go on to make
two important observations. The first is that the geometry of Euclid and the ge-
ometry of Lobachevski study different groups; hence, as such, they are compatible
with each other; or as Poincaré put it “the truth of the geometry of Euclid is not
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incompatible with the truth of the geometry of Lobachevski, since the existence
of the one group is not incompatible with the existence of the other group” (ibid.,
p. 215). What is each geometry true of, then? Poincaré does not say, but it is quite
clear from the context what he means: it is (in a sense trivially) true of the group
of transformations that characterises it. But the study of the natural phenomena
presupposes that they are in space; hence some geometry should be chosen anyway
for the study of natural phenomena to be possible. This is clearly Poincaré’s debt
to Kant. But unlike Kant, he took it that the conceptual task at hand is not the
co-ordination of Euclidean geometry with physics, but the choice of the suitable
geometrical group; that is, the choice of the suitable geometrical space.

And here comes Poincaré’s second important observation. The chosen group
is, indeed, Euclid’s. But not for reasons that Kant insisted, viz., that it captures
the form of pure spatial intuition; but because it is simpler than non-Euclidean
groups and – most importantly – because we encounter in experience (and this is
a contingent fact) a “remarkable” kind of bodies, which we call solid and whose
various possible movements are related very closely to the various operations of
the chosen group. Hence Poincaré makes the point that though the “fundamental
hypotheses of geometry are not experimental facts, ( ...) it is the observation of
certain physical phenomena that makes their choice from all possible hypotheses”
(1887, p. 215). In other words, the choice is based only on how commodious the
group is in characterising ‘spatial’ relations between physical phenomena, which
include the motion of solid bodies.

Four years later, in 1891, in his second piece on non-Euclidean geometry ti-
tled Les géométries non Euclidiennes – which appeared in translation in Nature in
1892 – Poincaré announced to the world that he had invented a new epistemic cate-
gory to place geometrical axioms, viz., conventions or definitions in disguise.5 Here
he distinguished geometrical indemonstrable propositions from arithmetical ones,
like the principle of least number (or equivalently, the principle of mathematical
induction), which he took to be synthetic a priori principles, because we cannot
“free ourselves” from them. But we can free ourselves from the axioms of Euclidean
geometry and besides we can actually base physics on non-Euclidean spaces. What
is rather interesting is that Poincaré adds a further reason why geometrical propo-
sitions are not empirical truths: “we do not do experiments on straight lines or
ideal circles; only material objects can be dealt with. On what would depend, then,
the experiments that serve to found a geometry?” (1891, p. 773; 1892, p. 407). The
point here is that geometry does not have the natural world as its proper object;
rather, being an abstract science, it deals with abstract (or ideal) entities, which as
such, are not encountered in the natural world. So geometry cannot be verified on

5That convention is a new epistemic category is defended in Psillos (1995) and in DiSalle (2006,
Ch. 3).
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the basis of experience, simply because, strictly speaking, the empirical objects fall
outside its proper scope.

But could it be that some empirical situation can falsify geometry? The thought
that this may happen is tempting because Poincaré wants to insist that the new
epistemic category he has introduced – the convention or definition in disguise
– is not fully devoid of empirical content. His point is rather subtle. Though
geometrical conventions do not have the empirical world as their proper content,
and though their choice is “free and (...) only limited by the necessity of avoiding
all contradiction”, they are, in a certain sense, applicable to the world we live in
precisely because there are objects in the world that can be suitably related to the
proper objects of geometry. Poincaré is never tired of repeating that the existence
of solid bodies makes geometry applicable to the world: “one argues constantly as if
geometrical figures behaved like solids” (1891, p. 773; 1892, p. 407). It might then
appear tempting to think that there might be a mismatch between geometry and
the behaviour of physical phenomena, such that the chosen geometry is falsified.

But this is not possible, according to Poincaré. The reason for this brings out
the full strength of his new epistemic category. Any attempt to subject a geometry
– that is a certain group – to empirical test would require making experiments (or
observations) on physical bodies and this implies that we would have to assume some
physical theory or other. Hence, we could never test geometry in isolation from
physical theory but only in conjunction with it. By conjoining Lobachevskian
geometry with astronomical theories, we would get the prediction of a finite par-
allax of a distant star. But if we conjoined them with Riemannian geometry, the
prediction would be of negative parallax. Do we have a crucial experiment here?
Far from it. When we assume that light travels in straight lines, we have thereby
assumed that a light ray is a straight line. Hence, were we to discover a negative
parallax or a parallax greater than a certain finite value, we could always respond to
this situation by modifying the laws of optics, e.g., by modifying the law that light
travels in straight lines. To make the point more precise, Poincaré argues that when
we envisage an empirical test, we envisage a situation which tests the conjunction
G&P (where G is some geometry and P is some physical theory); hence, when we
find recalcitrant evidence, we are always free to stick to the preferred geometry and
change the physical theory. That is why Poincaré confidently says that “Euclidean
geometry (...) has nothing to fear from new experiments” (1891, p. 773; 1892, p.
407).

This move might be taken to be a response to a typical case of underdetermi-
nation of theories by evidence. It might be taken to imply that what Poincaré
says is that we are always confronted with two empirically equivalent systems of
the world, one having non-Euclidean geometry and ordinary physics, and another
having Euclidean geometry and some new physics. Though Poincaré does not
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deny that this is a away to describe the epistemic situation, his point is deeper.
I think his key contribution in the delineation of the new epistemic category of
convention was his offering of a systematic way to disentangle the content of a
convention from various empirical assumptions associated with it, which might
create the impression that the convention is merely an empirical truth. We will see
this strategy being fully developed when he talks about conventions in mechanics,
but let us now see how he illustrates it in the case of geometry.

2.2 Conventional content vs empirical content

In L’espace et la géométrie 1895, he told vividly the story of a possible world in
which the underlying geometry is Euclidean but, due to the existence of a strange
physics, all attempts to find out empirically the geometry of this world would lead
its inhabitants to assume that the geometry is non-Euclidean. This world is the in-
terior of a sphere S. Viewing this world from “the outside”, we can easily infer that
its geometry is Euclidean. Things are not so simple for the locals, however. For,
unbeknownst to them, there is a medium permeating S such that the temperature
at each point is variable, being a function of the distance of each point from the
centre of the sphere. In particular, the temperature at each point is R2 − r2, where
R is the radius of the sphere and r is the distance of the point from the centre.
The freely-moving inhabitants of this world cannot notice any difference because
the laws of physics ensure that, wherever they move, thermal equilibrium is im-
mediately restored. But the laws of physics also ensure that all bodies, including
measuring rods, contract uniformly as they move away from the centre of S and
towards the periphery.

Imagine that the inhabitants of S try to determine the geometry of their world.
They will soon find out that they live in a Lobachevskian world of infinite extent.
One of their relevant empirical findings will be that they can draw an infinite
number of ‘parallel’ lines from a point outside any given line. The only operational
procedure at their disposal will be enough to persuade them of this: they extend the
lines indefinitely and they never meet. So, they will find irresistible the conclusion
that their world is Lobachevskian. Yet, an eccentric mathematician of S suggests
to his fellow scientists that the geometry of S is really Euclidean but that, due
to a universal force (the temperature field) which makes everything contract as
they move, the geometry appears to be non-Euclidean. Now, the inhabitants of
S are faced with two empirically equivalent alternatives. How are they to choose
between them? Poincaré says that whatever their choice be, it is not dictated by
their empirical findings. The latter can be ‘written into’ any of the two geometrical
languages, with suitable adjustments in the relevant physics.

But, as noted already, his point is not simply that evidence underdetermines
theory. Take (A) to be the proposition that in S more than one parallels can be
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drawn from a point outside a line. Now (A) can be partitioned into two other
propositions. The first is a geometrical proposition such as Euclid’s fifth postulate,
viz. (B ) that from a point outside a line only one parallel to this is drawn. The
second is a physical proposition, viz., (C ) that because of the temperature field, all
bodies in S, including measuring rods, contract uniformly as they move away from
the centre of S and towards the periphery. Now, (A) is an empirical proposition,
but its empirical content is (C ) and only (C ); (B ) remains a convention, which is
not amenable to empirical test.

In the same article (1895), Poincaré elaborated on the explanation of why ge-
ometry is only indirectly related to experience. This is that the space studied by
geometry – the geometrical space – is not the sensible space; it has properties rad-
ically different from the sensible (what he called the “representative”) space (e.g.,
it is homogeneous and isotropic). Better put, geometrical space is constituted (or
constructed) as such by applying the concept of group to certain ideal (mathemat-
ical/abstract) entities – the displacements (without deformation). These are not
empirical entities, but they can be seen, to some extent, as abstractions of empiri-
cal entities, namely rigid (solid) bodies. Geometrical space comprises the laws of
displacements – that is, the group they form. Geometrical space is a presupposi-
tion for doing science: “we reason about [external] objects as if they were situated
in geometrical space” (ibid., p. 636), though of course they are not.

It is well known that Poincaré took his inspiration from Helmholtz’s view
that the propositions of Euclidean geometry “were no other than the laws on mo-
tion of rigid bodies” and that the propositions of non-Euclidean geometries were
alternative laws governing the motion of bodies analogous to rigid bodies – laws
which do not apply to the actual world, but which could be conceived as apply-
ing without any contradiction (Poincaré 1903, p. 21). But he famously disagreed
with Helmholtz’s account of the status of these propositions.6 Helmholtz was
right in thinking that geometry requires free mobility – that is movement with-
out deformation – but wrong in thinking that the propositions of geometry were
“experimental”, since “the solids of nature follow them only roughly, and since,
besides, the fictitious bodies of non-Euclidean geometry do not exist, and cannot
be accessible to experiment” (ibid.). The turning point in Poincaré’s appraising of
the situation was the study of Lie’s theory of groups.7 Lie took each geometry to
correspond to a group of possible transformations of a figure and proved that if we
assume free mobility (that the movement of an invariable figure is possible), there
are three and only three geometries possible: Euclidean (space has zero curvature);
Lobachevskian (space has negative curvature) and Riemannian (space has negative
curvature). All three are, notably, geometries of constant curvature. Recall that

6For the relation between Helmholtz and Poincaré, see DiSalle (2006).
7For Poincaré’s study of Lie groups see Schmid (1982).

Methode

issn: 2281-0498
105 Issue 4



Stathis Psillos

Poincaré’s debt to Kant requires that the spatial framework should be set in ad-
vance of any scientific investigation of natural phenomena. But the choice of the
spatial framework (the choice of geometrical space) is not forced. It could be any
of the three spaces of constant curvature, but Poincaré suggests that the choice of
Euclidean space is the most commodious.

When Poincaré says that experience does not tell us which geometry is the
truest, but which is the most commodious, he merely recapitulates his points:

a) that the content of geometrical propositions is not the physical space but the
geometrical space;

b) that there are alternative accounts of the structure of geometrical space;

c) that none of these accounts is truer than the others, in and of itself;

d) that the very possibility of science requires that some account of geometrical
space is chosen so that we study physical phenomena as if they were located
in this space;

e) that the choice of this account is not dictated by experience; and that

f) nonetheless, experience (in the form of the properties of actual solid bodies)
guides this choice. This is, in a nutshell, Poincaré’s geometrical convention-
alism.

2.3 Form vs matter

What needs to be added is that for Poincaré the very concept of a group (qua
a freely created mathematical concept) is something that pre-exists in the mind.
As he says “it is imposed on us not as a form of our sensibility, but as a form of
our understanding” (1895, p. 645). The concept of group belongs to pure math-
ematics and as such it is a priori. But Poincaré says something stronger, viz., that
it is a form of understanding. Speaking loosely, the group characterizes the laws
that displacements obey. Displacements succeed one another (or, better put, our
representations of them succeed one another). Now, if, as a strong empiricist view
implies, all events are distinct and separate, then any displacement could be accom-
panied by any other. But this is not what Poincaré takes it to be the case. The very
possibility of understanding the world requires that there is, so to speak, some or-
der to the succession of displacements, some fixed laws of succession – and these are
imposed by the group. It is in this sense that the group is a form of our understand-
ing. It goes without saying that we could conceive of different laws of succession
of displacements – and hence of different particular groups – that constitute the
geometrical space. That is exactly what non-Euclidean geometries amount to. But
this does not imply that the very concept of a group is conventional. Rather, being
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a form of understanding, the group can capture only the “structure of the move-
ments of invariable solids” (1895, p. 644). Poincaré sticks to this view consistently.
In his (1897b), where he offers response to criticisms of his views, he notes that
experience is only the “occasion” for us to exercise our capacity to form the notion
of a group.

Before we leave this section, it is important for what follows to stress that for
Poincaré, geometry is about the form of geometrical space and not its matter. In
this, as he stresses in his (1898), he differs from Helmholtz and Lie, who took it that
geometry is directly applicable to the physical space – a continuum of three dimen-
sions. “For me”, Poincaré says, “the form exists before the matter” (ibid., p. 40).
And the matter is indifferent for the study of geometrical space in the same way
in which the matter of a cube (whether it is made of iron or wood) is indifferent
for the study of the geometrical properties of the cube. Matter matters, of course,
but only when a group is chosen to characterise physical space. And when, in this
process, there seem to be apparent deviations from the properties of the group, we
do not thereby conclude that the chosen geometry is falsified. Rather, Poincaré
retorts to his favourite move of splitting the content of an empirical proposition
into two components, one purely geometrical and hence conventional and another
physical and hence empirical. When, for instance, we realise that the motions of
actual solid bodies satisfy a certain group – e.g. Euclid’s – only approximately, we
account for this by splitting the relevant motion into two components – one being
a displacement which rigorously satisfies the operations of the relevant group and
another which corresponds to a qualitative change (such as thermal dilations) of
the body in motion (cf. ibid., p. 11).

3 The case for physical conventionalism

Poincaré often said that the principles of mechanics were conventions, or def-
initions in disguise. How exactly are we to understand this claim? There are two
sources in Poincaré’s physical conventionalism, as I will show in detail below. The
first source is related to the very status of the principles of mechanics qua general
and objective principles. Briefly put, the idea is that the principles of mechanics
are neither inductive generalisations nor synthetic a priori principles. However,
they are general, exact and universally applicable. The problem, as Poincaré sees
it, is that the principles of mechanics do not directly apply to the world: the proper
object of the principles of mechanics is not the world at large, at least in the first
instance, but various idealised entities. Hence, the principles of mechanics can nei-
ther be verified nor falsified by actual objects in the world simply because they
do not apply directly to them. Seen in this light, the principles of mechanics are
conventions in that whatever epistemic status they have within a certain theory or
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theoretical scheme is not a function of empirical evidence or (either analytic or syn-
thetic) a priori reasons. The second source of physical conventionalism is related
to an important theoretical fact, viz., that there are conceptually distinct theories
of mechanics, that is at least three different ways to formulate the key principles of
a mechanical framework. This is something Poincaré fully realised after reviewing
Hertz’s The Principles of Mechanics (1894) in 1897. Put together, the two sources
imply that not only are the principles of mechanics per se neither verifiable nor fal-
sifiable, but that there is ineliminable room for choice among distinct sets of such
principles. Let us take these two sources in turn and examine their consequences
in more detail.

3.1 The principles of mechanics

Thinking about the principles of mechanics, Poincaré argued that they are
neither a priori demonstrable principles nor experientially determined generali-
sations. As he explained in detail in his address to the 1900 Paris International
Congress of Philosophy with a paper titled Sur les principes de la mécanique the
principles of mechanics are neither a priori truths nor empirical ones. Take for
instance Newton’s first law, i.e., the law of inertia. Its truth cannot possibly be
demonstrated a priori. This law states that if a body is not acted upon by any ex-
ternal forces, its velocity remains unchanged. Yet, one can conceive of worlds in
which if a body is not acted upon by any external forces, either its position or its
acceleration – and not its velocity – remain unchanged. In such worlds, Newton’s
first law would not hold. Different laws, expressed in a different mathematical
form, would have to be formulated. Hence, the truth of Newton’s first law cannot
be demonstrated by a priori reasoning (cf. 1901, pp. 460-463). Are, then, the prin-
ciples of mechanics empirical generalisations established (and hence accepted) on
the basis of experience? The answer is negative since the systems to which the laws
of mechanics apply, such as perfectly isolated systems or systems that pertain to
absolute motions, were not to be found in nature. No-one can really verify these
principles by recourse to experience. No experiential situation can afford us with
perfectly isolated systems and the like (cf. ibid., p. 474). Besides, no experience
can ever falsify a principle of mechanics, for two reasons. First, since the principles
of mechanics apply to systems not encountered in experience, they can never be
submitted to a rigorous and decisive test. Second, even if a mechanical principle
could be submitted to a rigorous test, it could always be saved from refutation by
some sort of corrective move. Suppose, for instance, that we found that natural
systems did not obey the law of inertia. We could always attribute this deviation
to the motion of hidden masses or molecules.

As in the case of geometry, this latter point was elevated by Poincaré to a
principled way to divide the content of a theoretical claim into two components,
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one expressing a convention and another having some empirical import. To see
this, let us take a look at the following example:

(1) ‘The stars obey Newton’s law of gravitation.’

One would expect that (1) is a testable hypothesis. But (1) can be decomposed
into two others:

(2) ‘Gravitation obeys Newton’s law;’ and

(3) ‘The only force exerted on the stars is gravitation’ (cf. 1902b, p. 276).

Suppose, Poincaré says (1902b, p. 276), that astronomers discovered that the
stars do not exactly obey Newton’s law of gravity. What could they do? There
are two options available. First, they might say that the gravitational force does
not vary exactly as the inverse square of the distance between the two stars. If
one thought of Newton’s law of gravity as an empirical claim (an inductively es-
tablished generalisation, say), such an observation would falsify it. The second
option, however, is for them to say that the force of gravity does vary exactly as
the inverse square of the distance, but in this particular case – and other cases of
similar deviations – gravitation is not the only force acting on the stars.

Accordingly, one is free to treat (2) as a definition that “escapes the verification
of experience”. (2) is no longer an empirical statement. Nor, however, is it a priori
true. The peculiarity of (2) is that it is independent of experience in that experience
can neither verify it not falsify it, and yet, it is not a principle of reason or a
synthetic a priori truth, since it can be consistently denied without contradiction.
Hence (2) has a peculiar epistemological status – and this is precisely what Poincaré
captures by calling it convention or definition in disguise. Unlike (2), (3) is a
substantive claim that can and should be tested (“it will be on the proposition (3)
that this verification [of (1)] will be exercised”). So, it is because of the testability
of (3) that (1) is rendered testable, as it ought.

Conventions, then, are principles which are detached from experience, even
though, as Poincaré repeatedly stressed, they bear some relation to experience:
it is experience that “suggests”, or “serves the basis for”, or “gives birth to” the
principles of mechanics (1897a, p. 237; 1900a, p. 557; 1901, p. 351). This relation
to experience, weak though it may be, explains why conventions are applicable
to experience.8 The applicability of the principles of mechanics to experience is
based on the fact – and this is a contingent fact about the world – that the worldly
objects are similar to the proper objects of the principles of mechanics. Though, for
instance, there is not, in nature “any system perfectly isolated, perfectly removed
from all external action” for the principle of inertia to hold of it, “there are systems
almost isolated” for which the principle of inertia is a good approximation.

8This line of thought is developed in Folina (2014).
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Seen in slightly different light, conventions are empirical principles which have
been elevated to general, exact and unconditionally true principles; principles which
are used to interpret experience and define the proper object of a scientific theory.
Here is how he put it: “The principles are conventions and disguised definitions.
Yet they are drawn from experimental laws; these laws have, so to speak, been
exalted into principles to which our mind attributes an absolute value” (1902a, p.
153). This exaltation is based on a free, but not arbitrary, choice.

Note that so far there is no tension between calling a principle convention and
taking it to be true. On the contrary, a principle of mechanics is both a conven-
tion (in that it is neither an empirical generalisation nor a priori justifiable) and
true (in that it defines the proper object of the scientific theory). More specifically,
though the truth of a principle is not factual, since the principle is not empirical,
the principle is nonetheless true in that it is constitutive of a theoretical framework.
It emerges that Poincaré’s physical conventionalism rests on a very rich and com-
plex sense of convention. Conventions are not true by sheer stipulation (since they
make ‘some kind of contact’ with experience) and yet they are freely chosen by the
scientists.9

Being conventions, principles are not subjected to experimental test. Then, are
they immune to revision? By no means. Principles that are no longer convenient
should be abandoned. Poincaré was quite firm in that no experiments can ever con-
tradict a principle of mechanics. For no experiment can conclusively refute such a
principle. Yet, experiments can condemn a principle of mechanics, or even a whole
mechanical framework, in that persistent failure to account for new facts renders a
particular principle or a whole framework no longer convenient (cf. 1900a, p. 19).

3.2 Which principles of mechanics?

When Poincaré reviewed Hertz’s book in 1897, it became clear to him that
there are competing mechanical frameworks; that is networks of principles of me-
chanics that are conceptually distinct, though empirically equivalent. Hertz dis-
tinguished between the classical system, based as it was on Newton’s law, the then
popular energetic system, which was based on the principle of conservation of
energy, and his own new system of mechanics, which dispensed with forces alto-
gether.

Poincaré agreed with Hertz that the “classical system” ought to be abandoned
as a foundation for mechanics (cf. 1897a, p. 239). The chief reason for this was that

9In Psillos and Christopoulou (2009), we have defended the view that conventions can be seen
as capturing some sense of relative a priori. We have also explored some difficulties with the way
Poincaré splits the content of a theoretical propositions into two components, one conventional and
another theoretical and suggseted that, by using Ramsey-sentences, Carnap found a way to improve
on Poincaré’s method of splitting. See also Stump (2003).
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a good definition of force was impossible. An attempt to define force as the product
of mass times the acceleration of a body would not do. For, even if a definition
for acceleration were considered available, the definition of force would require
defining mass, and this, Poincaré thought, was impossible. For one, a definition of
mass would rely on Newton’s third law of the equality of action and reaction, i.e.
mAaA = −mBaB , where mA, mB and aA, aB respectively stand for the masses
and the accelerations of two bodies A and B. This would imply that Newton’s
third law of motion would acquire the status of a definition – no longer amenable
to empirical confirmation. To apply this definition to the situation at hand, we
would require that bodies A and B are the only bodies present. But this is not right.
For we know that bodies A and B are not the only two bodies in the universe and
that they cannot be completely isolated from other bodies in the universe; hence,
we have to take into account all other forces acting upon bodies A and B. If we
were to assume that the force exerted by a body C on B does not affect the action
of B on A, but gets linearly added to this action, then we could find a way to
disentangle the action of body B on A from the actions of the rest of the bodies in
the universe. But Poincaré thought that this assumption, which amounted to the
hypothesis of central forces, was unwarranted and, actually, false – since, in the case
of the masses of the planetary bodies what is actually measured was gravitational
mass and not inertial mass. In light of this failure of the hypothesis of central forces,
the definition of mass becomes all the more difficult. For now, the only meaning
that could be given to Newton’s first law is this: the movement of the centre of
gravity of a system that is not acted upon by external forces will be rectilinear and
uniform. Since, obviously, the position of the centre of gravity of a system depends
on the values given to masses, it may seem easy to calculate the masses so that the
movement of the centre of gravity of the system under consideration is rectilinear
and uniform. However, since the only system that it is not acted upon by external
forces is the universe as a whole, the previous procedure for defining mass can only
be applied to the universe as a whole. For only this system is free from all external
forces and therefore its centre of gravity moves in a uniform and rectilinear way.
Yet, Poincaré concluded, it is evidently absurd to think that the motion of the
centre of gravity of the universe can or will be ever known (cf. 1897a, pp. 234–
236; also 1902a, pp. 120–123). Consequently for Poincaré “it is impossible to form
a satisfactory idea of force and mass” (1897a, p. 236).

Like Hertz, Poincaré was more sympathetic to the “energetic system”, which
was based on the principle of conservation of energy and Hamilton’s principle
that regulates the temporal evolution of a system (cf. ibid., pp. 239–240). The
basic advantage of the energetic system was that in a number of well-defined cases,
the principle of conservation of energy and the subsequent Lagrangian equations
of motion could give a full description of the laws of motion of a system. These
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cases concern systems of conservative forces, that is systems where forces depend
only on the relative positions and mutual distances of a certain number of mate-
rial points, and are independent of their velocities. Then, one can define a potential
energy-function U which depends only on the position of material points and is in-
dependent of their velocity. In these cases, the principle of conservation of energy
takes the following definite form: there is a conserved quantity which is accessible
to experience and is the sum of two terms, one being dependent only on the posi-
tions of material points (potential energy U ), the other being proportional to the
square of their velocities (kinetic energy T ).

Poincaré suggested that the foregoing procedure gives an unambiguous defini-
tion of energy. Energy, is then, a constant quantity which can be decomposed into
two terms T and U such that T is a homogeneous quadratic function of the veloci-
ties and U is a function of the positions only (cf. ibid., p. 240). If one also takes into
account other forms of energy such as thermal, chemical or electric, what Poincaré
defined as energy in general is nothing but a quantity that remains constant and is
the sum of three terms potential energy U , kinetic energy T and internal energy
Q such that U is independent of velocities, T is a homogeneous quadratic function
of the velocities, and Q is only dependent on the internal state of the system (cf.
ibid., p. 241; also 1902a, p. 142). One cannot therefore fail to notice that what
determines a certain quantity as energy is, apart from its constancy, a particular
structural feature that this quantity possesses, viz., that it can be decomposed into
three terms, each of them being defined as above. The distinctive feature of what
Poincaré called energy is precisely this decomposition. For this only distinguishes
energy from other conservative quantities, e.g., any arbitrary function of T + U ,
or of T + U +Q.

However, this definition of energy shows the limitations of the energetic sys-
tem. When among the several conservative quantities of a system, someone cannot
single out one which can be decomposed into three separate functions U , T and Q

defined as above, he has no clue at all as to which of these conservative quantities
they may call energy. For Poincaré this eventuality showed that the energetic sys-
tem ends up proclaiming a very general, and rather empty, principle of the form
“There is something that remains constant” (1897a, p. 242). As it stands, this prin-
ciple is not informative. The very fact that the world is governed by laws entails
that there are quantities that remain constant. Which of them is to be taken as
energy?

So, the energetic system presented a definite advantage over the classical system.
In moving from the latter to the former “one has realised progress”, yet at the same
time, Poincaré noted, “this progress is insufficient” (cf. ibid.).

Finally, there is Hertz’s own system. Based on the claim that forces acting
at-a-distance were inconsistent with Maxwell’s electromagnetic theory, Hertz de-
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veloped a system of mechanics founded solely on the concepts of space, time and
mass. The fundamental law of this system was a kind of a generalised law of inertia
combined with Gauss’s Principle of the Least Constraint. In order, however, to
reduce every natural motion to an instance of this fundamental law, as well as to
account for possible deviations from this law, Hertz had to posit a multitude of
hidden, or concealed, masses that were connected with the visible ones, thereby
forming an articulated (or, connected) system. In Hertz’s system, force and energy
give way to the action of masses and motion, but not necessarily to observable
masses and motion. Hertz thought that this is just as well, since both of the rival
systems posit invisible entities, viz., forces and energy. He took it that his own
system is preferable to its rivals since the invisible entities it posits – bodies with
masses – are of the same nature as the visible ones. Actually, as Poincaré (ibid., p.
249) noted, due to a theorem proved by the French mathematician Gabriel Königs,
any material system subject to forces can be re-interpreted as an articulated system
of (visible and invisible) masses, subject to rigid connections but not forces. This
new Hertzian system was more complicated than the classical one, but still possible
and equivalent to it.

3.3 From conventions to hypotheses

In the course of his study in the foundations of mechanics Poincaré made two
important observations. The first is that the principles of mechanics, far from be-
ing experimental or inductively established truths, are definitions. They are being
used as definitions within the theory and constitute the proper object of the the-
ory: they enforce the assumptions that are necessary for the theory to be rigorous
and exact. But they are not devoid of all empirical content since the worldly ob-
jects are similar, to a good approximation, to the objects of mechanics. The second
observation is that the proper analysis of the structure of the theories of mechanics
should distinguish clearly between the definitions, the mathematical theorems and
the experimental truths. In other words, the proper philosophical analysis of theo-
ries should delineate the proper object of theories and how this object is related to
the empirical world. For Poincaré, Hertz’s own system of mechanics complicated
matters further by adding an extra element to the foundations of mechanics, viz.,
the hypothesis; and in particular the hypothesis of invisible masses and their rigid
connections.

The very possibility of alternative systems of mechanics suggests that the prin-
ciples of mechanics are not a priori true. Not only are there alternative systems,
but they can be used as a basis for building the rest of science onto them. Hence,
the principles of mechanics are not synthetic a priori principles. And yet, since
they are not experimental or inductive truths either, what is their status? Poincaré
emphatically wants to block the view that the principles of mechanics are hypothe-
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ses. He took Hertz’s own view to lean towards this claim, but he thought that
treating the principles of mechanics as hypotheses is wrong because it fails to ex-
plain the quasi-foundational status of the principles and in particular that they are
“postulates applicable to the totality of the universe and regarded as rigorously
true”.

There is no doubt that Poincaré took very seriously the fact that hypotheses
are indispensable in science. Actually, he devoted much of his 1900 address to the
Paris International Congress of Physics, titled “Relations entre la physique expéri-
mentale et de la physique mathématique” to explaining the role of hypotheses in
physics. “Every generalisation”, he says, “is a hypothesis; the hypothesis has then
a necessary role that no one has ever contested” (1900a, p. 8). He did claim that
hypotheses should be submitted to verification and that if they do not stand the
test, they should be “thrown aside without regret”. This is clearly not the fate of
the principles of mechanics – they are not verifiable or falsifiable, though there are
circumstances under which they are ‘condemned’ and abandoned.

Poincaré famously went on to distinguish between three types of hypotheses.
The first type included all those assumptions that make mathematical physics pos-
sible, e.g., certain idealisations and simplifications, principles of symmetry and the
like. The second type – which Poincaré called ‘indifferent’ – has a similarity with
the first in that it includes assumptions that ease calculations. But they are sig-
nificantly different from the first type in that the same results – or predictions –
can also be achieved, perhaps in a more cumbersome fashion, by their negations.
Poincaré used the atomic conception of matter as an example of an indifferent
hypothesis. The core of the atomic conception of matter was that matter was dis-
continuous, that is that it had a granular structure: it consisted of a huge – but not
infinite – number of particles in constant motion subject to mechanical laws. So
the rival hypothesis – indifferent too – was that matter was continuous. The third
kind of hypothesis is what he called “true generalisations” (ibid., p. 10), which
are subject to experimental confirmation or disconfirmation. This latter category
includes the bulk of hypotheses in physics, including Maxwell’s laws.

There is an obvious reason why Poincaré intended to limit physical conven-
tionalism to some principles and not all of them – that is, to some but not to
all putative laws that could be elevated to principles. Science is by and large an
empirical enterprise and this character would be totally lost is conventions ruled
everywhere in science. As we shall see later, philosophers such as Le Roy inter-
preted Poincaré as being an extreme conventionalist and Poincaré made a special
effort to warn off such interpretations of his views.
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3.4 Why the principles of mechanics?

This has to do with elements of Kantianism in Poincaré’s conception of sci-
ence.10 Poincaré substantially transformed the Kantian idea that there is a hierar-
chical order among the various sciences, according to which the very possibility of
empirical and testable physical science requires that there are in place the axioms
of Euclidean geometry and the principles of Newtonian mechanics. But he did
not deny a kernel of truth in this idea, viz., that the very possibility of empirical
and testable physical science requires that there is in place some spatio-temporal
framework and some general principles of motion. The chief difference with Kant
is that the required spatio-temporal framework and the general principles of mo-
tion was not uniquely given as principles of the understanding and forms of pure
intuition, but freely chosen among competing frameworks. Mechanics does not re-
quire Euclidean geometry for its formulation; as he put it: “mechanical facts might
be enunciated with reference to a non-Euclidean space which would be a guide
less convenient than, but just as legitimate as, our ordinary space; the enunciation
would thus become much more complicated, but it would remain possible” (1901,
p. 498). Electromagnetic facts do not require Newtonian mechanics for their enun-
ciation either. In fact, it might be more natural to try to capture electromagnetic
facts with in an energetic framework, based on the principle of conservation of
energy.11

So there is a considerable degree of flexibility in choosing spatio(-temporal) and
mechanical frameworks for doing science—but a choice has to be made! The empir-
ical models of the world—those that are licensed by ordinary inductive methods,
hypotheses, and experimental tests—should be constrained from above by (freely
chosen and hence conventional) frameworks of principles of geometry and me-
chanics. These are universally applicable, certain, and exact principles which define
the proper object of science. But the object of knowledge of science is, ultimately,
the world and hence a story must be told as to how the object of science, as defined
by the spatio-temporal and mechanical framework, is related to the world. And
this is where relationism becomes pertinent, as we shall see in section 6.

10For some detailed analysis of this, see Friedman (1999, Ch. 4).
11Moreover, as Poincaré himself proved, a necessary and sufficient condition for a complete me-

chanical explanation of a set of phenomena is that there are suitable experimental quantities that can
be identified as the kinetic and the potential energy such that they satisfy the principle of conserva-
tion of energy. Given that such energy functions can be specified, there will be some configuration
of matter in motion (that is, a configuration of particles with certain positions and momenta) that
can underpin (or model) a set of phenomena. As he put it:

In order to demonstrate the possibility of a mechanical explanation of electricity, we do not have to preoccupy ourselves with
finding this explanation itself; it is sufficient to know the expressions of the two functions T and U which are the two parts
of energy, to form with these two functions the equations of Lagrange and, afterwards, to compare these equations with the
experimental laws (1890; 1901, p. viii).

For more on this see my (1995).
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There is, however, an inelastic constraint on scientific theorising—and hence
on all empirical models of the world as well as on the spatio-temporal-mechanical
frameworks. This is pure mathematics. Poincaré was adamant that (only) the prin-
ciples of arithmetic are synthetic a priori, mainly because he thought that the prin-
ciple of mathematical induction requires synthetic a priori intuition. Synthetic a
priori principles are “imposed on us with such a force that we could not conceive
of the contrary proposition, nor could we built upon it a theoretical edifice” (1892,
p. 406). The last requirement is very interesting, since it suggests that synthetic
a priori principles are constitutive of our form of understanding. Conventions,
on the other hand, are such that they can be meaningfully negated and alternative
theoretical structures can be built on their negations.

4 Geometrical conventionalism vs physical conventional-
ism?

When Poincaré describes the relation between conventions in geometry and
conventions in mechanics, he seems to waver a bit. He offers his account in La
Science et l’Hypothése in 1902, in a section of general conclusions which follows his
chapters on geometry and mechanics. And though these chapters were simply the
papers he published elsewhere in the 1890s, the section with the general conclu-
sions is specially written for his book. The wavering has to do with Poincaré’s
conviction that mechanics, unlike geometry, should still be treated (and taught) as
an experimental science. Geometry is formal and abstract – essentially a mathemat-
ical science. Mechanics is not. But this seems to be in tension with his systematic
unravelling of the role of conventions in mechanics as well as in geometry. Are
they different types of convention after all? Here is how Poincaré (1902a, p. 151)
describes the difference:

This convention [the principle of mechanics], however, is not absolutely arbitrary;
it does not spring from our caprice; we adopt it because certain experiments have
shown us that it would be convenient. Thus is explained how experiment could make
the principles of mechanics, and yet why it cannot overturn them. Compare with
geometry: The fundamental propositions of geometry, as for instance Euclid’s pos-
tulate, are nothing more than conventions, and it is just as unreasonable to inquire
whether they are true or false as to ask whether the metric system is true or false.

At first glance, it seems that geometrical conventions are nothing but conven-
tions, while mechanical conventions are not nothing but conventions. And to some
extent this is true. For as Poincaré goes on to explain there is a difference in the
proper objects of geometry and of mechanics. Geometry has nothing to do with
ordinary physical objects – its objects are ideal and abstract entities. And yet, when
we choose one geometry as the most convenient for reasoning about spatial rela-
tions among physical objects (and for doing mechanics and science) our choice is
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guided (but not dictated) by facts about ordinary physical objects. In mechanics,
on the other hand, there is no such a huge gulf. The objects of mechanics are,
ultimately, ordinary physical objects and the experiments that guide the choice of
the most convenient mechanical framework are experiments on ordinary physical
objects. Here is how Poincaré (1902a, p. 152) puts it:

The experiments which have led us to adopt as more convenient the fundamental
conventions of geometry bear on objects which have nothing in common with those
geometry studies; they bear on the properties of solid bodies, on the rectilinear prop-
agation of light. They are experiments of mechanics, experiments of optics; they can
not in any way be regarded as experiments of geometry. (...) On the contrary, the
fundamental conventions of mechanics, and the experiments which prove to us that
they are convenient, bear on exactly the same objects or on analogous objects. The
conventional and general principles are the natural and direct generalization of the
experimental and particular principles.

But in the end of the day, the difference is not between two types of convention
but, I think, with two different ways to arrive at them. In mechanics, the process
is, by and large, bottom up, while in geometry the process is top down. In me-
chanics, we start with experiments and experience which guide but not dictate the
formation of the principles of mechanics – the experimental laws that are at the ba-
sis of the principles of mechanics are “elevated”, as we have seen, into conventions
or definitions in disguise. In geometry, we start from the axiom of free mobility
and a notion of a group of transformations which apply to displacements (that is to
geometrical objects) and then ‘connect’ them with ordinary objects (solid bodies)
which satisfy the operations of the chosen group approximately. To put it bluntly,
in mechanics, matter is prior to form, whereas in geometry form is prior to matter.

But the product of these two distinct processes, the conventions, is the same –
it is a new epistemic category which is distinct from the three Kantian epistemic
categories. Conventions, both in mechanics and geometry, constitute the objects of
science and constrain from above proper empirical scientific inquiry. Conventions
are neither verifiable; nor falsifiable. They are freely chosen but the choice can be
more or less commodious. So, one category – conventions – but two ways to get
to it.

5 All conventions or no conventions?

5.1 Federico Enriques

One important criticism of Poincaré’s conventionalism came from the Italian
mathematician Federico Enriques, who in 1906 published an important book, ti-
tled Problemi della scienza, and was soon translated into French and English. In
effect, Enriques challenged the need for a new epistemic category alongside the
three Kantian ones and noted that, in a certain sense, conventions are the Kantian
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a priori principles ‘born again’ in a new form (Enriques 1914, p. 165): they are
“the canons whereby experience is interpreted”. His diagnosis why this is so bears
some examination.

The first reason Enriques cites is related to what he calls ‘the vicious circle of
science’. He rightly points out that the scientific representation of reality relies on
two kinds of hypotheses or assumptions. There are the explicit hypotheses (the
postulates of a theory) which state the basic principles of the theory. But there
are also the implicit hypotheses, which are typically not stated within the theory
and are not an explicit part of it, but are presupposed for the formulation – mostly
the mathematical formulation – of the principles of the theory. Implicit hypothe-
ses involve various idealisations and simplifications which make possible the exact
formulation of the principles of the theory as well as various assumptions about
the object of knowledge of scientific theory, viz., the object to which the princi-
ples apply (cf. 1914, p. 149). The implicit hypotheses, as he put it, “give us some
knowledge beforehand which limits the field of experience and enables us to inter-
pret it”. When a theory is subjected to empirical test, Enriques says, the implicit
hypotheses are not under test for they make the testing of the theory possible. It is
only the explicit hypotheses – the principles of the theory – that are being tested.
But the implicit hypotheses themselves are not arbitrary; in fact, they are employed
because it is thought that they have already been subjected to test and verified by
“means of other theories and explicit hypotheses, and are corrected when need-
ful by a wider comparison with the knowledge already acquired” (1914, p. 165).
Hence, though it is not the case that implicit hypotheses are under test when the
theory is put to the test, they are not tested then, but they are presupposed as al-
ready being tested and perhaps corrected. It follows that “the progress of science is
dependent upon science itself” and this is what he calls the vicious circle of science.
It is precisely in order to avoid this kind of vicious circle that Kant, according to
Enriques, introduced the synthetic a priori principles, which are independent of
experience and absolutely presupposed by it. And it is for the same reason that
post-Kantian French conventionalists introduced pure conventions. But, he says
metaphorically, instead of introducing gold as the one and only standard of value,
they took science to be in a state of “multi-metalism”, since there is now a choice
of standards of value.

Enriques thinks that this is not the right way to address the problem of the
alleged vicious circle and that the circle evaporates when we think of explicit as well
as implicit hypotheses as “assumptions gradually becoming determinate rather than
as conventions” (ibid., p. 165). In fact, as he explains elsewhere, if conventions are
introduced into science, it is not clear why all postulates might not be transformed
to definitions, thereby losing all contact with reality (ibid., p. 251). As we saw it is
precisely this ‘overspilling’ of conventions that Poincaré wanted to avoid.
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The second of Enriques’s critiques of conventionalism is that the need to in-
troduce a priori principles or conventions rests on a “fundamental illusion which
comes from regarding our knowledge solely in its completed, that is in its actual
aspect, without taking account of its genesis” (ibid., p. 180). He explains that
both Kant and Poincaré, in different but related ways, share the thought that be-
cause geometry precedes mechanics and physics and because geometry is used in
the construction of the principles mechanics and mechanics grounds the various
principles of physics, there is a relation of necessary dependence among them; a
relation which “finds expression in Kant’s a priori” and in Poincaré’s conventions.

We have already seen that Poincaré did adopt this hierarchical view of science
and that he did think that there is a strict order of dependence in science: from
geometry, via mechanics to physics. But knowing the existence of alternative ge-
ometries and mechanics, he thought – unlike Kant – that this order of dependence
does not determine uniquely the required principles of geometry and of mechanics.
Enriques’s reaction to this claim is, we might say, naturalistic: scientific knowledge
is a dynamic process of mutual adjustment, where experience is indeed interpreted
by means of previous knowledge. And our knowledge of the world relies on “pro-
gressive correction” (ibid., pp. 28-29).

The idea that there is no need for a special epistemic category – convention –
which acts as the ‘born again’ form of the Kantian a priori, in light of the mul-
tiplicity of geometrical and mechanical theories – get a real bite when Enriques
criticises Poincaré’s geometrical conventionalism. His key point is that Poincaré’s
geometrical conventionalism that geometry is distinct from physics. It is precisely
because geometry is taken to vary independently of physics that Poincaré can treat
geometry as resting on conventions which can he held upon come what may by
making suitable adjustments in the physical theory. Making a point that presages
Reichenbach and Einstein, Enriques notes that “geometry is part of physics” (ibid.,
p. 174), a part “which has attained to a high degree of perfection by virtue of
the simplicity, generality and relative independence of the relations included in it”
(ibid., p. 181). Discussing in detail Poincaré’s story of the spherical possible world
in which the temperature field makes all objects shrink uniformly when they move
(see section 2.2 above), Enriques says that a temperature field acting on all bodies
in a uniform way would have “a true geometrical character”, since all bodies in
the world would have the temperature that belongs to the place they are in; hence,
in this world, it would no longer be possible to say that bodies expand with the
increase of their temperature. The geometry in this world would be genuinely dif-
ferent from ours. Exactly the same is the case if we were to admit that light-rays
did not travel in straight-lines. An attempt to make this a universal trait of the
possible world Poincaré discusses would presupposes not just local refractions of
light-rays by certain media, but a universal, all-pervading heterogeneous medium
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which affects all light-rays without affecting anything else. This model, Enriques
says, amounts to “a geometrical world different from ours” (ibid., p. 179).

The way Enriques developed the thought that geometry is part of physics was
to argue that given a theory of margins of errors in measurement, actual physical
objects can be taken to satisfy the properties of geometrical objects within some rel-
atively specified margin of error. But even if this was too quick, his main thought,
viz., that Poincaré’s conventionalism required that physical facts could vary totally
independently of geometrical facts was to the point.

Enriques’s overall reaction was that understanding science as a dynamic process
of theoretical development and change did not require the elevation of some prin-
ciples to conventions; it would suffice to take some principles as fixed when others
are being tests in a process of mutual adjustment subject to empirical testing.

As noted already in the Introduction, the very same critique was briefly launched
by Russell in his review of Science and Hypothesis in 1905. His point was that
Poincaré’s conventions could be simply seen as hypotheses “which are withdrawn
from the region of experimental verification” (Russell 1905, p. 416). As such, they
do not have a special epistemic status; rather, they are like any ordinary theoretical
hypothesis, but simply regarded “beyond doubt” relatively to all other hypotheses
of a theory, when the theory is put to the test. Russell does explore Poincaré’s
idea that some principles are “elevated” to conventions and notes that ascribing the
status of a convention to a hypothesis is simply a measure of the unwillingness of
the scientists to abandon it.

What is noteworthy is that both Enriques and Russell challenge Poincaré’s hier-
archical conception of science and transfer Poincaré’s conventionalism in the con-
text of theory-testing. It then becomes possible for them to argue that ascribing to
a certain principle a sui generis epistemic status – convention – is not necessary for
the explanation of the fact this principle is not put to the test when the theory of
which it is part is being tested.

5.2 Édouard Le Roy

But if science rests, at least partly, on conventions, why not assume that all
scientific assertions are conventions? This is a thought that found fertile ground
in Paris around 1900 and, in a certain sense it received inspiration and some prima
facie legitimacy from Poincaré’s writings until the turn of the century. In this pe-
riod in Paris, the so-called ‘bankruptcy of science debate’ was still raging. I am
not going to discuss this extremely interesting debate in any detail here,12 but the
gist of the debate, if you like, was that science had failed to deliver on its sup-
posed promise to render the world intelligible and to ground and explain the role

12There is separate paper in the pipeline for this. A talk on the ‘bankruptchy of science’ debate is
at http://www.youtube.com/watch?v=zwEYZNKeCpQ
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of human beings in it. The debate erupted in the early 1880s and went through var-
ious phases but by 1900 a new philosophical critique of science started to become
prominent, viz., that there are no standards of objectivity in science – all science,
including all scientific ‘facts’ are free constructions of the human mind. This idea
acquired currency because among other things it granted the mind the freedom to
construct the world; this idea of freedom was supposed to leave room for religious
belief. Though some of this criticism was developed – from a pragmatist point
of view – by the philosopher Frédéric Rauh (1861-1909), who aimed to combat
“the superstition of objectivity”,13 the main critic was Édouard Le Roy, a young
mathematician and philosopher and protégé of Henri Bergson, who in 1899-1900
published a series of four controversial pieces titled ‘Science et philosophie’.

Le Roy embarked on a triple critique of science: facts, laws and theories. Ac-
cording to him, facts are not discovered, but they are constituted and created by the
scientists in “the amorphous matter” (Le Roy 1899 II, 515). Nature forms a whole
in which there are no isolated objects. There are no “intrinsically definable facts”.
The isolation of facts, the “cutting up” of the amorphous and continuous matter, is
done by the mind and it is always perspectival – from a chosen in advance point of
view (ibid., p. 517). The scientific fact is constituted symbolically out of the facts
of common sense by means of scientific concepts – without them the scientific fact
does not exist. As he put it, “All facts are the result of a collaboration between
nature and us; all facts are symbolic points of view adopted to look at the real”
(ibid., p. 518).

When it comes to laws, he claimed that they are mental constructs. They ex-
press relationships, in fact invariable relations, among scientific facts. “Constancy
in the variation: that is the general formula of the laws” (ibid., p. 518). But laws
are not part of reality; they are “products of our ability to endlessly vary the angles
at which we look at the constancy in the world”. It is because scientists look for
constancies in the phenomena that they devise laws. Their objectivity is “primar-
ily the consequence of our discursive operations which they express”. Laws do not
reveal Nature: they are schematic summaries, convenient modes classification of
scientific facts.

In a similar fashion, theories do not aim to anticipate the unknown “except
incidentally”; rather, they provide general representational schemes “that can be
adapted to a class of laws”. A theory, Le Roy says, is to the law what a law is to the
fact: a symbolic image (ibid., p. 527).

Briefly put, Le Roy says that when we do science we “are immersed in an ocean
of images that are by definition what we call reality”. Science is a scheme which
imposes order to this “huge mass” (ibid., I, p. 381). It is a gradual rationalization
of reality. For him “the constant preoccupation with assuring the rigor and the

13For Rauh’s crticism see Horner (1997).
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objectivity of knowledge has too often hidden from view the immense role played
in the experimental determination of the truth by the free activity of the mind, and,
as a consequence, it has generally hindered a clear understanding of the contingence
and the relativity of the sciences of Nature.”(ibid., II, pp. 513-514)

What is important for our purposes is that this extreme constructivist account
of science found its inspiration in Poincaré’s writing. Le Roy was quite explicit that
the view he was canvassing – the critique of science – was based on Poincaré’s views
on geometry and physics; views which he tried to summarise (cf. ibid., pp. 535–
ff). Motivating his own views in the first instalment of his article, Le Roy noted
that Poincaré’s articles on Space and Geometry in 1895 inspired his views. He took
Poincaré’s main message to be that understanding the world requires the choice of
“a general scheme of representation” which imposes a “form” on the sensible world,
where this scheme draws its rational value from the symbolic powers of our mind.
Le Roy concluded that in the basis of scientific theories are “an enormous mass of
conventions and decrees”, which are not necessary and whose “true nature” lies in
a “clever clever compromise between the world and us”. Science has as its mission
to fabricate truth, as he put it (ibid., p. 559).

But, one may wonder, is there any contact between science and the world ac-
cording to this view? In his piece ‘Un positivism nouveau’, which appeared in
1901, Le Roy suggested that scientific assertions can be considered “as practical
recipes for getting some useful results” and that this is the strongest positive result
concerning science: science is a rule for action. What is also worth stressing is that
for Le Roy it is precisely this conventional and practical character of science that is
underwritten by human freedom and makes science compatible with freedom.

As we are about to see, it was precisely this ‘extreme nominalism’ that made
Poincaré mitigate his conventionalism by trying to strike a balance between the
freedom of conventions and the constraints that nature puts on them. With an ex-
plicit reference to Le Roy, he noted in the Introduction to La Science et l’ Hypothése,
which appeared in 1902:

Some people have been struck by this character of free convention recognizable in
certain fundamental principles of the sciences. They have wished to generalize beyond
measure, and, at the same time, they have forgotten that liberty is not license. Thus
they have reached what is called nominalism, and have asked themselves if the savant
is not the dupe of his own definitions and if the world he thinks he discovers is not
simply created by his own caprice. Under these conditions science would be certain,
but deprived of significance (Poincaré 1902a, p. 25).

Poincaré’s reaction was to stress that science does tell us something about reality
– but this something is the “relations among things” and not the things themselves.
Incidentally, he did agree with Le Roy on the point of the unknowability of the
things-in-themselves. For Le Roy too the “scientific noumenon” is scientifically im-
possible to represent”. But while Le Roy thought that the scientific phenomenon
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is constructed, Poincaré thought that it is not. As we shall see, his relationism was,
to a good measure and attempt to block extreme conventionalism. In fact, most
of the argument for relationism was built in Poincaré’s lengthy reply to Le Roy
titled ‘Sur la valuer objective de la science’, published in Revue de Metaphysique et
de Morale in 1902.14

6 The case for relationism

Poincaré rarely talks about structure, but he frequently talks about form. Math-
ematical physics makes essential use of mathematics and mathematics is about
form. The key methodological problem that Poincaré faced was how the rather
abstract and formal structure of mathematical physics is connected with experi-
ence; how it acquires empirical content. We have already explored his claim that
part of the content of scientific theories is conventional, meaning that it defines the
objects of knowledge of theories, which is not, in the first instance the empirical
world, but rather the idealised entities that satisfy the principles of geometry and
mechanics. But scientific theories should be, and are, about the empirical world;
hence, their content, ultimately, should be the world. This creates a problem: how
can it be that the object of knowledge of scientific theories is not, in the first in-
stance, the empirical world, but it is, in the last instance, the empirical world? It
is in order to address this problem that Poincaré takes a relationist view of scien-
tific representation and knowledge. But it turns out that relationism can help him
block the charge that scientific theories are like simply networks of conventions
resembling Penelope’s web.

In this section, we will explore three important (and related) motivations for
his relationism. The first stems from the very nature of mathematical representa-
tion in science; the second comes from the need to ground objectivity in science;
and the third is related to lessons drawn from the history of science.

6.1 Mathematical representation

For Poincaré, relationism is motivated by the way mathematics represents its
objects. In fact, it does not care about its objects; it cares only about the relations
they have to each other. Poincaré could not be clearer: “Mathematicians study not
objects, but relations between objects; the replacement of these objects by others
is therefore indifferent to them, provided the relations do not change. The matter
is for them unimportant, the form alone interests them.” And elsewhere: “It is the
mathematical spirit, which disdains matter to cling only to pure form”. Mathemat-
ics represents up to isomorphism. This makes mathematics, among other things,

14Part of the aim of this paper was to rebut Le Roy’s claim that scientific facts are ‘fabricated’.
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useful in representing diverse physical processes or phenomena “which have no
physical relation either apparent or real” and yet equations of the same form char-
acterise them (Poincaré 1897a, p. 108). Such an example is Laplace’s equation,
which “is met in the theory of Newtonian attraction, in that of the motion of liq-
uids, in that of electric potential, in that of magnetism, in that of the propagation
of heat and in still many others” (ibid.).

We have already seen how this works in the case for geometry, qua mathe-
matical science. Geometry represents up to isomorphism and precisely because of
this it can be made to represent relations among non-geometrical objects too, such
as the relations among actual solid bodies (subject to conditions and idealisations
noted above). Here is how Poincaré put it: “We now know that in a group the
matter is of little interest, the form alone counts, and that when we know a group
we thus know all the isomorphic groups”. But the same holds for analysis too.
Mathematical physics represents physical processes and phenomena by equations
and equations express relations among magnitudes.

Now, from this it does not follow that we cannot know the relata that are
related by the relevant relations. But Poincaré had independent reasons to deny
that this knowledge is possible; or that it is required for an adequate understanding
of how scientific theories represent the world. For scientific theories do not aim
to describe how things really are but to co-ordinate various empirical laws which
are discovered experimentally and this co-ordination is best achieved by specifying
the mathematical form of these laws – that is, the mathematical equation which
best expresses the relations that the experiment has revealed – and by uniting these
mathematical forms into a single mathematical framework. Note that the mathe-
matical equations that capture – in the most convenient way – the phenomenon
under study capture, by the very nature of mathematical representation, the form
of this phenomenon. Even this is, actually, an idealisation. For the mathematical
equation describes, strictly speaking, not the form of the physical phenomenon
itself directly, but the form of an idealised analogue of this phenomenon – one that
is amenable to a formal mathematical description. In other words, the mathemati-
cal representation of physical phenomena relies indispensably on idealisations and
abstractions. Here is an example discussed in some detail by Poincaré (1900a, p.
11):

If we wished to study in all its complexity the distribution of temperature in a cooling
solid, we could never succeed in that. Everything is simplified, if one reflects on that
a point in the solid cannot directly impart heat to a distant point; it will immediately
impart that heat only to the nearest points, and it is but gradually that the flow of heat
will reach other portions of the solid. The elementary phenomenon is the exchange
of heat between two contiguous points. It is strictly localised and relatively simple if
we admit, as is natural, that it is not influenced by the temperature of the molecules
whose distance is sensible.
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Clearly, the ‘elementary phenomenon’ i.e., the exchange of heat between two
contiguous points, is an idealisation, which, however, is such that “the knowledge
of the elementary fact permits us to state the problem in an equation” (1900a, p.
13).

In light of this, it is no surprise that Poincaré (1889, iii; 1902a, p. 215) says
emphatically that

[t]he object of mathematical theories is not to reveal to us the true nature of things;
this would be an unreasonable pretension. Their sole aim is to coordinate the physical
laws which experiment reveals to us, but which, without the help of mathematics, we
should not be able even to state. It matters little whether the ether really exists; that
is the affair of metaphysicians. The essential thing for us is that everything happens as
if it existed, and that this hypothesis is convenient for the explanation of phenomena.
After all, have we any other reason to believe in the existence of material objects?
That, too, is only a convenient hypothesis; only this will never cease to be so, whereas,
no doubt, some day the ether will be thrown aside as useless. But even at that day, the
laws of optics and the equations which translate them analytically will remain true, at
least as a first approximation. It will always be useful, then, to study a doctrine that
unites all these equations.

We can therefore know only the relations ‘among things’ because all we can
represent mathematically in the sciences are these relations. Even then, we know,
strictly speaking, ‘the elementary phenomenon’ – which is a simplified and ide-
alised analogue of the complex natural phenomenon – because only this phenomenon
is amenable to a mathematical description.

6.2 The things themselves

In the Introduction to La Science et l’Hypothése, where he presented in summary
form the basic tenets of his research in the 1890s, Poincaré gave this point a more
radical twist by claiming that “the things themselves are not what it [science] can
reach, as the naive dogmatists think, but only the relations between things. Outside
of these relations there is no knowable reality” (1902a, p. 25). Poincaré does not
deny that there is reality outside relations; he denies that this reality is knowable.

Note that Poincaré does not use the expression ‘things in themselves’ (choses
en soi) but the expression ‘things themselves’ (chose elles-memes). Elsewhere he
talks about the “nature of things” or “real objects”. It is plausible to think that
Poincaré’s motivation is Kantian nonetheless. He might not have taken on board
the full Kantian distinction between the noumena and the phenomena, but it is
quite clear that he wanted to draw a distinction between how things are – what
their nature is – and how they are related to each other. A plausible way to draw
this distinction is to differentiate between the intrinsic and perhaps fully qualitative
properties of things – what he plausibly calls ‘nature’ of things – and their relations.
The former are unknowable, whereas the latter are knowable. Though, to the
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best of my knowledge, there is no detailed discussion of these issues in Poincaré’s
writings, if he did mean to draw this kind of distinction, then he would be a
pioneer of the view that came to be known as “Kantian Humility”, viz., the view
(attributed to Kant himself by Rae Langton (1998)) that “we have no knowledge of
the intrinsic properties of substances” (ibid., p. 21). This kind of Humility would
presuppose that all knowledge of a thing is via and through its relations (to other
things), and of course, this kind of view is clearly Poincaré’s, if only because, as
we have seen, all knowledge in mathematical physics is mediated by mathematical
representations. But, as Langton (ibid., p. 12) has claimed for Kant, this kind
of Humility would also presuppose that the relations of things are irreducible to
the intrinsic properties of things.15 And it is hard to say that this was Poincaré’s
view.16 What he says quite clearly is that “not only science cannot teach us the
nature of things but nothing is capable of teaching it to us” (Poincaré 1902b, p.
291). And he adds meaningfully: “if any god knew it, he could not find words to
express it”. I take this to mean that the knowledge of the nature of things would
require intellectual intuition, which we humans lack.

15Langton (1998) argues at length that Kant adopted the view that “the relations and relational
properties of substances are not reducible to the intrinsic properties of substances” (p. 109). Intrinsic
properties are those that a thing can have on its own, that is, even if it were a lone object in the
universe. Relational properties, on the other hand, imply “accompaniment”, that is the existence
of something other than the bearer of the relational property. James van Cleve (1999, pp. 150–ff)
offers an excellent discussion of the claim that Kant took things-in-themselves to be things-as-they-
are-intrinsically. But his considered judgement (ibid., p. 155) is against this interpretation.

16I do not know, nor can I find in his writings, what Poincaré thought about relations. At about
the same time as he was developing his relationism, Russell had been working on the nature of re-
lations. There is ample evidence that Poincaré knew Russell’s work on logic and the foundations
of mathematics, as he engaged critically with Russell’s logicism and defended a kind of neo-Kantian
philosophy of arithmetic (cf. 1905b). But I cannot tell whether he paid any attention to Russell’s
theory of relations. The fact is that Russell did develop an account of relations that could underscore
the irreducibility of relations and ground Poincaré’s Humility. In (1899a) and then again in (1903),
Russell famously argued that asymmetrical relations cannot consistently be taken to be reducible to
properties of their relata. That is, no asymmetric relation aRb is equivalent to two relational prop-
erties a(Rb) and b(Ra) attributed to its relata a and b respectively. He also argued that no asymmetric
relation aRb is equivalent to a property of the whole (ab). (This last point was taken to decisively
refute Bradley’s view that all relations are internal.) As Russell noted, a view that takes an asymmet-
ric relation, such as a is greater than b to be equivalent to a claim about both a and b taken together
fails to explain why it is a that is greater than b and not b greater than a. Russell concluded that at
least some relations (he actually thought that all relations) should be external, meaning irreducible
to the properties of their relata. Now, asymmetric (and transitive) relations are vital in science and
mathematics as they capture the content of key relations, such as of order, temporal, quantitative and
causal. Given a Russellian account of relations, it is no wonder that the relata can be unknowable
even if all relations are known. But whether or not this view was actually shared by Poincaré is only
a matter of (plausible) speculation.
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6.2.1 Boutroux’s relationism

Now, it is prima facie plausible to argue that the origin of this Poincaréan view
about relations is in Émile Boutroux, who was a famous neo-Kantian philosopher
and Poincaré’s brother-in-law. Boutroux delivered a series of lectures at the Sor-
bonne in the early 1890s pursuing a relational approach to reality.17 On Boutroux’s
view, science does not aim to offer “knowledge of the intrinsic nature of things”,
but instead to extract “from the given reality, sensibly constant rapports”. It then
“declares that such a rapport is explained, when it has been possible to reduce it
to some other rapport already known and recognized as permanent and general”
(Boutroux 1914, pp. 4-5). Science, for Boutroux, is essentially mathematical and
the scientific explanation of the universe would be “a certain formula, one and eter-
nal, regarded as the equivalent of the entire diversity and movement of things”. But
for Boutroux, precisely because science can only reveal “abstract relations” whose
relata “are themselves relations”, science remains ultimately disconnected from the
world of concrete relations, whose relata “are real subjects, true beings”. Hence,
there is a limit to the intelligibility of the world as offered by science, though
the “scientific form of intelligibility” is the most objective form. The problem as
Boutroux sees it is that, science becomes objective by “setting aside individuals,
natural beings”, whereas he thinks that there is also need to understand concrete
relations among concrete entities, which cannot “be reduced to mathematical re-
lations”. Boutroux does not deny that things have a substantial nature. But this
cannot be known: “We are foiled when we try to determine the substantial nature
of things; all the same, we cannot abolish them”. (ibid., p. 67)

Boutroux had started to develop these views already from De la contingence
des lois de la nature, which appeared in 1874 and made him quickly famous. The
key theme of the book was that there should be room for human freedom in the
world of science; and the means by which he chose to make such room was to
claim that laws of nature are not necessary but, ultimately, products of human
freedom. In the course of defending this view, Boutroux took it that science is
unable to reveal “the inmost nature of being” and that it has “for its object a purely
abstract and exterior form” (1920, p. 27). Besides he took it that science succeeds
in offering exact definitions – meaning: principles and laws – only because it deals
with abstractions. Hence, “we cannot apply to things themselves the determination
inherent in the definitions of the deductive sciences” (ibid., p. 153).

In his aforementioned Sorbonne lectures, Boutroux took the view he was op-
posing to be that “laws of nature may be compared to laws proclaimed by a legisla-

17The lectures were published under the title De l’idée de loi naturelle dans la science et la philosophie
contemporaines in 1985. As Mary Jo Nye (1979) has documented, Poincaré was a member of the
Boutroux Circle and was heavily influenced by his philosophy. For a detailed account of Boutroux’s
philosophy of nature, see Capeilleres (2009).
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tor and imposed a priori upon reality”. This is emphatically a view that Poincaré
did not accept. Actually, Poincaré’s own appeal to the conventional character of
the fundamental spatio-temporal-mechanical framework for doing science might
be taken to highlight precisely the role of human freedom; freedom in choosing
the fundamental principles of this framework. But unlike Boutroux, Poincaré also
stressed that this choice, though free, is not arbitrary, but guided by experience.
Hence, though both Boutroux and Poincaré subscribed to a relationist understand-
ing of representation in science, Poincaré thought that the scientific relations do,
in some way, get in touch with the world of experience even if they (can) tell us
nothing about things themselves.

Interestingly, Boutroux thought he was finding an ally in Poincaré’s conven-
tionalism since he took it that it emphasised the role of the mind in making scien-
tific knowledge of the world possible in that it is ultimately the mind that chooses
the theoretical framework through which experience is interpreted. In his Gifford
lectures in 1903-05 at the University of St Andrews, Boutroux stressed that “A sys-
tematic intervention of the mind can alone explain the transmutation that science
makes experience undergo” and having also stressed that the mind is free to choose
frameworks which “are different and even contradictory in their fundamental hy-
potheses”, he credits this point (in a footnote) to Poincaré (Boutroux 1911, p. 245).
Still, for Boutroux – and for Poincaré too – scientific theories cannot ‘penetrate’, as
it were, through the veil of relations. Boutroux makes exactly this point when he
says that “Science no longer expects to endow the mind with a close copy of exter-
nal things, which apparently, just as we suppose them, do not exist. She discovers
relations that experience verifies through the senses. It is enough that she may and
must be called true, in the human meaning of the word” (ibid., p. 246).

As noted already, conventionalism was widely taken to be an answer to the
issue of how the world of science can be compatible with human freedom. But
there were softer and harder versions of conventionalism. The key thought, as it
were, of “the representatives of a philosophy widely circulated in recent years”, as
Boutroux put it, was that “the postulates, principles and definitions of science are
mere agreements, the outcome of an arbitrary Choice” (ibid., pp. 282-3), which,
though “occasioned, suggested perhaps by experience they neither are nor can be
prescribed by it”. Poincaré was lumped together with Pierre Duhem, Le Roy and
Gaston Milhaud, by Boutroux, as part of this movement. But in other writings (cf.
1908, p. 701), Boutroux was more careful to distinguish between Poincaré and Le
Roy. As Boutroux saw the difference, Poincaré was giving freedom to the human
mind to consider “the most general propositions of any real science” as conventions
and to make them an integral part of science, but Le Roy was moving even further
by taking it to be the case that “not only theories and laws, but the scientific facts
themselves are shaped and manufactured by the human mind”: science “in an in-
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vention of the mind”. Boutroux claimed that the opponents of this conventionalist
movement are scientists such as Paul Painlevé and Jean Perrin who do not grant the
human mind the power to find any truth of the world “apart from the established
principles of science” (ibid., p. 702).

6.3 The objectivity of relations

Though Poincaré based his theory of geometrical space on the sensible space,
he took it that “sensations cannot give us the notion on space”, since “by themselves
they have no spatial character” (Poincaré 1898, p. 1). Sensations have an irreducible
qualitative character and they differ from one another qualitatively. Yet, though
none of our sensations, taken in isolation, would have led us to the idea of space,
Poincaré argued (1895, p. 636) that we are led to the idea of space “solely by
studying the laws, according to which these sensations succeed each other”. In
other words, it is the relations among sensations that are at the basis of our notion
of representative space.

In his reply to Le Roy in 1902, Poincaré used this kind of thought to build
an account of the objectivity of relations. Sensations, he noted, are private and
inaccessible from a third-person point of view (1902b, p. 288). They do not have
precise criteria of identity. There is no way to say whether sensation A had by
S is the same as sensation B had by S′ even if they look at similar or exactly the
same objects in exactly the same circumstances. Suppose that S sees a red poppy
and a red cherry and has a sensation A and S′ sees a red poppy and a red cherry
and has a sensation B. It is possible that the sensation A in S is exactly the same
as the sensation S′ has when he sees a green leaf and conversely. Poincaré thinks
there is no way to tell whether A is identical to B. However both S and S′ see a
difference between red cherries and red poppies on the one hand and green leaves
on the other, even if the sensations that ‘correspond’ to these objects are ineffable.
This leads Poincaré to argue that “all that is objective is devoid of all quality and is
only pure relation (ibid., p. 289).

What makes qualities subjective is that they are “intransmissible”; that is, un-
shareable by different subjects. What is objective, Poincaré says “must be common
to many minds and consequently transmissible from one to the other” (ibid., p.
288); hence objectivity requires communication. His argument may be recon-
structed as follows:

1. Whatever is objective must be common to many subjects (minds).

2. Hence, whatever is objective must be transmissible from one subject to an-
other.

3. If something is transmissible, then it is communicable and intelligible.
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4. Sensations and qualities (whatever is purely qualitative) are not ‘communica-
ble’.

Therefore,

5. Sensations and qualities (whatever is purely qualitative) are not objective.

Hence, objectivity lies in relations. Why? If everything is such that it has
qualities and it is related to other things, and since qualities are not objective, only
relations will be objective, if objectivity is possible at all.

Poincaré realized that this position could be pushed to its extremes if relations
are taken to be purely quantitative and formal. But if this road were taken, “some-
one could have been carried away into saying that the world is only a differential
equation” (1902b, p. 289). So relations are objective but not all objective relations
are purely formal and quantitative; non-formal (which I take to mean ‘interpreted’
and not purely mathematical) relations can be objective too. In other words, it is
transmissibility that is required for objectivity; not formality.

Even if we accept that only relations are objective, it does not follow that all
relations are objective. Actually, it does not even follow that all transmissible rela-
tions are objective. Le Roy could accept that some relations are transmissible, but
he would still question whether they tell us anything at all, even in principle, about
the world. Poincaré was well aware of this. He wanted to separate objectivity (or
reality, as he put it) from dreams as well as from the fiction (ibid., p. 290). The
transmissiblity (or inter-subjectivity) condition separates objectivity from dreams,
but how about fiction? Here is where he takes it that the relations that are trans-
mitted should reflect (or correspond to) real relations among things (that is, among
their unknown qualities). So objectivity lies in transmissible relations which corre-
spond to real relations among things in the world (or among qualities in general).

Poincaré’s relationism has led him to the thought science is “a system of re-
lations”. His new take on objectivity suggests to him that the objectivity of this
system of relations requires that two conditions are met. First, the relations (as
expressed in theories) are transmissible; that is, they survive theory-change. Let’s
call this Invariance. Second, the transmissible relations (the invariant elements of
theory-change) should reflect real relations among things. Let’s call this, perhaps
not using the exactly right word, Correspondence.

Before we say a bit more about these conditions, let us note that Poincaré wants
to block the view that objectivity requires more than relations (subject to the two
conditions mentioned). For this he argues that asking for more is, in essence,
asking for more relations. For as he put it “External objects, for instance, for
which the word object was invented, are really objects and not fleeting and fugitive
appearances, because they are not only groups of sensations, but groups cemented
by a constant bond. It is this bond, and this bond alone, which is the object in
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itself, and this bond is a relation” (ibid., pp. 290-1). Hence, “it is relations alone
which can be regarded as objective”.

When the claim is made that science teaches us the true nature of things,
Poincaré takes it to mean that it teaches “true relations of things”. If something
more is asked, if the true nature of things is supposed to be something over and
above their relations, then Poincaré emphatically stresses, as noted already, that
this nature is unknowable by us and inexpressible to us even by God!

6.4 The history of science

Note that of the two conditions of objectivity above, the second (Correspon-
dence) is independent of the history of science. Though I will not argue for this
here in any detail, it captures an early version of the so-called ‘no miracles ar-
gument’, which Poincaré puts it in terms of how unlikely it is that a theory is
radically false and yet it yields successful predictions. Science makes better than
chance predictions (“the scientist is less mistaken than a prophet who should pre-
dict at random”) and this suggests that science “is not without value as a means for
knowledge” (1902b, p. 265). I am not claiming that Poincaré was a scientific real-
ist, though, as I have argued elsewhere, he progressively became more convinced
of the reality of unobservable entities such as atoms (see Psillos 2011; also Poincaré
1913b, p. 90). But what I called Correspondence was meant to strengthen Poincaré’s
relationism by providing grounds for the claim that the relations science establishes
are, in a certain sense, objective and real – not mere fictions.

The first condition of objectivity, however, does raise an empirical issue that
only the history of science can answer. As Poincaré put it, the relations established
by science, or at least some of them, should still be the same “for those who shall
come after us” (1902b, p. 291). But the only ground for this claim should be
historical: viz., that the relations established by past theories have been the same
for subsequent theories. Now, Poincaré thinks that “science has already lived long
enough for us to be able to find out by asking its history whether the edifices it
builds stand the test of time, or whether they are only ephemeral constructions”
(ibid., p. 292).

The context in which this historical issue is raised is instructive. With the
‘bankruptcy of science’ debate still raging in Paris, and with a claim of growing
popular reputation that scientific theories are ephemeral, the need to defend a level
of continuity in theory-change in science was not just a theoretical need licensed
by Poincaré’s second condition of objectivity, but a practical need too, urged by
the growing public distrust of science as a means to deliver some knowledge of the
world.

In the Introduction to La Science et l’Hypothése, Poincaré made clear what he
took his task to be:

Methode

issn: 2281-0498
131 Issue 4



Stathis Psillos

Without doubt, at first blush, the theories seem to us fragile, and the history of science
proves to us how ephemeral they are; yet they do not entirely perish, and of each of
them something remains. It is this something we must seek to disentangle, since there
and there alone is the veritable reality (ibid., p 26).

If what survives theory-change is the true reality, then the issue is to find out
what, if anything survives, and to show that it does survive. If that relations should
survive is a conceptual issue, that relations do survive is an empirical-historical one.
Settling this empirical issue is important for another reason. Poincaré was aware of
the various raptures in the foundations of science that were then taking place. In
his address to the St Lewis International Congress of Arts and Sciences, he noted
that “there are indications of a serious crisis” in the principles of mathematical
physics (1905, p. 1). A bit later, in the preface to the English edition of his three
books (Foundations of Science, 1913a), he spoke of an eve of a revolution in physics.
So it became imperative for Poincaré to show the constructions of science are not
ephemeral, that they are not like “Penelope’s web” (1905, p. 23).

Poincaré does not embark on a detailed account of how the history of science
bears his relationism, but he does outline the strategy that should be followed, viz.,
look for invariant elements in theory-change. Here is where the various motiva-
tions for his relationism converge. For relations are expressed mathematically by
equations; relations are what science should look for; relations that survive theory-
change are the locus of objectivity; hence retained equations are the locus of ob-
jectivity in science. The history of science should bear this out, and Poincaré
offers a famous case as a prime example: the Fresnel-to-Maxwell case. As is well-
known, Fresnel’s laws relating concerning the amplitudes of reflected rays vis-à-vis
the amplitude of incident rays in the interface of two media were retained within
Maxwell’s theory of electromagnetism.

Here is his point:

These equations express relations, and if the equations remain true it is because these
relations preserve their reality. They teach us, now as then, that there is such and such
a relation between some thing and some other thing; only this something formerly
we called motion; we now call it electric current. But these appellations were only
images substituted for the real objects which nature will eternally hide from us. The
true relations between these real objects are the only reality we can attain to, and the
only condition is that the same relations exist between these objects as between the
images by which we are forced to replace them. If these relations are known to us,
what matter if we deem it convenient to replace one image by another. (1900a, p 15)

In his reply to Le Roy, Poincaré repeated essentially the same point, adding
that this kind of invariance is the mark of the real. But we should not lose sight
of two important points. The first is that invariance is one of the two conditions
of objectivity; the other being that the invariant elements in theory change should
‘latch onto’ the world; and it is precisely because they latch onto the world that
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science’s success is not a matter of chance. The second point is that for Poincaré
science is, ultimately a creation of the human mind – a free creation, to be exact –
which, however, is constrained by Invariance and Correspondence in that the latter
show us that this creation, though free, is not arbitrary but tells us something about
the world.

6.5 Pure Structuralism?

In the Introduction, we saw Russell taking Poincaré to endorse pure structural-
ism, viz., that “even the relations are for the most part unknown, and what is
known are properties of the relations, such as are dealt with by mathematics”. This
claim is clearly exaggerated. For one Poincaré himself explicitly resisted the claim
that “the world is only a differential equation” (Poincaré 1902b, p. 289), meaning
that the relations that science establishes, though expressed mathematically, are the-
oretical, and hence interpreted, relations among physical magnitudes. For another,
Poincaré makes clear that the order of dependence between the worldly relations
and mathematical equations is from the former to the latter. That is to say, it is
because real relations are invariant that they are represented by invariant mathemat-
ical equations in different theories. Now, the retention of mathematical equations
in theory-change is clearly a sign for an underlying invariant natural relation. But
this should not obscure the fact that the invariance of the equation is explained by
the invariance of the natural relation. As Poincaré puts it: “the equations express
relations, and if the equations remain true it is because these relations preserve
their reality” (1900a, p. 15). As we have seen, the very nature of mathematical
representation in mathematical physics makes it the case that only the relations
‘among things’ can be known because all that can be represented mathematically
in mathematical physics are these relations. But it would be wrong to conclude
from this that for Poincaré only the formal properties of these relations can be
known. Discussing in passing the kinetic theory of gases, long before he came to
accept the reality of molecules based on Perrin’s work on the Brownian motion,
Poincaré observed that the theory has revealed to us a “true relation” which had
been “profoundly hidden”, viz., the relation between gaseous pressure and osmotic
pressure (cf. ibid., p. 16). This is far from being a formal relation. Actually, it was
precisely this relation that Perrin explored when he devised a model of the Brow-
nian particles suspended in an emulsion based on the kinetic theory of gases (see
my 2011).

What Poincaré resisted, as we have noted, was the idea that there will be knowl-
edge of how things themselves are, meaning: what their qualitative, non-relational
nature is. In the discussion that followed his talk at the World Congress of Phi-
losophy in 1900, Poincaré (1900c) was pressed by the mathematician Paul Painlevé
to mitigate his conventionalism by adopting the “method of successive approxi-
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mations”. His thought was the truth of scientific theories could be justified by
the successively more precise agreement between them and reality. In his reply,
Poincaré did not deny that science has progressed by “successive approximations”.
But he emphatically denied that we can reach a stage at which we know how things
are. The nature of things, he claimed, is an “unknown” for which we will never
have enough equations to determine. We will always have “less equations than un-
knowns”. It is this kind of thought that explains his epistemic Humility about the
qualitative properties of the physical magnitudes. And it is the closest we can get
to Poincaré’s admitting that this is because what things are does not determine how
things relate to each other.

To see the significance of Poincaré’s claim, let us contrast it with a point made
by Enriques a few years later. Enriques adopted a form of relationism too (cf.
Enriques 1914, p. 67). But he thought that we can hone in real things by means
of relations. That is, he thought (in a certain sense, like Carnap did in his Carnap
1928, p. 25) that as more and more relations are known, the objects that bear these
relations are known too.18 According to Enriques:

A real thing always implies various associated relations between series of sensations
that are produced under given conditions. And by virtue of this multiplicity of re-
lations which is capable of endless extension, the hypothesis that there is a reality is
enlarged, beyond the world which can be immediately perceived by our senses. Espe-
cially by means of psychological hypotheses, reality acquires a social significance (as
Comte has taught). The real gets defined, in this way, as an invariant in the correspon-
dence between volition and sensation (Enriques 1914, p. 65).

The idea we need to focus on is that of “the multiplicity of relations which is
capable of endless extension”. For Enriques it is precisely this ‘endless extension’ of
relations that takes science beyond the world of phenomena and offers some, per-
haps limiting, knowledge of the qualitative natures of the entities that science de-
scribes. Circa 1905, Poincaré would resist this conclusion, though c. 1912 (towards
the end of his life) he did come to believe in the existence of atoms, interestingly
based on Perrin’s account of Brownian motion and the almost ‘endless extension’
of the way in which Avogadro’s number could be calculated.19

7 Conclusions

Though conventionalism and relationism are independent of each other, Poincaré
endorsed both. Part of the reason was that he found in their combination a plat-
form from which he could re-conceptualise and transform some key Kantian ideas

18For a discussion of Russell’s and Carnap’s structuralisms see Psillos (2009, part II).
19In Psillos (2011), I have argued that Poincaré and other scientists who were initially antihteti-

cal to the existence of atoms were characterised by a spirit of epistemological openess which made
possible their conversion to atomism.
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in light of the developments in mathematical physics of his time. However, con-
ventionalism was going beyond relationism in grounding how the object of science
is constituted; and relationism was going beyond conventionalism in showing how
the object of science is related to the natural world.

Conventions were supposed to capture the Kantian element of the spontaneity
of understanding. Convention is a new epistemic category. Conventions are neither
synthetic a priori principles nor empirical ones, though they retain some elements
of both. They are constitutive of the object of knowledge of science; better put,
they are constitutive of the fundamental spatial and mechanical framework for the
development of scientific theories of the world. But they are not necessarily true.
In fact, they are freely chosen among competing sets of principles, the choice being
guided by considerations of convenience. At the same time, conventions are not
arbitrary since they are suggested by various empirical considerations, without in
any way dictated by, or made probable on the basis of, experience. And though
they can never be contradicted by experience, they can be condemned by it and be
abandoned as being no longer convenient.

Conventions, for Poincaré, make scientific knowledge of the world possible.
Scientific knowledge requires a notion of time, of geometrical space and principles
of motion and dynamics. All these impose from above freely chosen constraints
to proper empirical scientific inquiry. Though the objects of science as constituted
by the conventions are not directly encountered in the world, it is a fortunate and
contingent fact that the empirical objects are in many ways similar to the objects
of science. This explains the applicability of conventions to experience. In fact, the
contact between the objects of science and the empirical objects is structural: ab-
stract scientific theories are related to the world of experience by sharing structure;
that is, by capturing and expressing relations among empirical objects by means of
their mathematical equations. This thought expresses Poincaré’s relationism. For
him, relationism is motivated by the way mathematical physics represents its ob-
jects. We can know only the relations among objects because all we can represent
mathematically in the sciences are these relations.

Relations were supposed to capture the Kantian limits to knowing the things
themselves. Poincaré’s relationism was at the same time an expression of Humility
and expression of optimism, viz., that some knowledge of the world is possible.
But the sought after relations were not purely formal – as Russell was pushing for.
They were clearly expressed by mathematical equations, but they were theoretical
relations. Relations were also meant to mitigate conventionalism. For Poincaré,
objectivity lies in invariant relations – both synchronically and diachronically. Pre-
cisely because relations remain invariant under theory-change (which is supposed
to be brought out by the study of the history of science), we have reason to believe
that science captures real relations among physical magnitudes and that science
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does not weave the web of Penelope.
Insofar as Poincaré was a conventionalist, he was not a rampant convention-

alist. Insofar as he was a structuralist, he was not a pure structuralist. Insofar as
he was both, he was delineating a position which allowed room for both freely,
but not arbitrarily, chosen constitutive principles of science and the acquisition of
objective, though, relational knowledge of the natural world.

In the Centenary of Poincaré’s birth in 1954 André Lalande, a French philoso-
pher and contemporary of Poincaré, summarised one half of Poincaré’s position in
the following very eloquent way:

The world which science causes us to become acquainted with is but the most recent
stage of the constructions raised in common by scientists and philosophers on the
basis of our sense impressions and in accordance with the guidance of our reason.
(Lalande 1954, pp. 597-8)

The missing half is that the most recent stage of the scientific constructions is
related to previous ones and hopefully future ones by means of invariant elements,
which express relations among real things in the world.

Acknowledgments

I want to dedicate this piece to Bill Demopoulos and Robert DiSalle, two
friends of mine who have taught me a lot about philosophy and Poincaré in par-
ticular. Research for this paper was partly co-financed by the European Union
(European Social Fund – ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) – Research Funding Program: THALIS–UOA-APRePoSMa.

Methode

issn: 2281-0498
136 Issue 4



Stathis Psillos

References

Ben-Menahem, Y. (2006). Conventionalism: From Poincaré to Quine. New York:
Cambridge University Press.

Boutroux, E. (1908). La philosophie en France depuis 1867. Revue de Métaphysique
et de Morale 16, 683–716.

Boutroux, E. (1911). Science and Religion in Contemporary Philosophy. New York:
The MacMillan Company. Translated into English by Jonathan Nield.

Boutroux, E. (1914). Natural Law in Science and Philosophy. New York: The
MacMillan Company. First published in French in 1895 and Translated into
English by Fred Rothwell.

Boutroux, E. (1920). The Contingency of the Laws of Nature. Chicago and London:
The Open Court Publishing Company. First published in French in 1874 and
Translated into English by Fred Rothwell.

Capeilleres, F. (2009). To reach for metaphysics: Émile Boutroux’s philosophy of
science. In R. A. Makkreel and S. Luft (Eds.), Neo-Kantianism in Contemporary
Philosophy, pp. 193–249. Indiana University Press.

Carnap, R. (1928). The Logical Structure of the World. Berkeley: University of
California Press. English translation by R. A. George, 1961.

De Paz, M. and R. DiSalle (2014). Poincaré, Philosopher of Science: Problems and
Perspectives. The Western Ontario Series in Philosophy of Science 79. Dodrecht:
Springer.

Demopoulos, W. and M. Friedman (1985). Critical notice: Bertrand Russell’s The
Analysis of Matter: its historical context and contemporary interest. Philosophy
of Science 52, 621–639.

DiSalle, R. (2006). Understanding Space-time: the Philosophical Development of
Physics from Newton to Einstein. Cambridge: Cambridge University Press.

Enriques, F. (1914). Problems of Science. Chicago and London: The Open Court
Publishing Company. Translated into English by Katharine Royce.

Friedman, M. (1999). Reconsidering Logical Positivism. Cambridge: Cambridge
University Press.

Giedymin, J. (1982). Science and Convention: Essays on Henri Poincaré’s Philosophy
of Science and the Conventionalist Tradition. Oxford: Pergamon.

Methode

issn: 2281-0498
137 Issue 4



Stathis Psillos

Gray, J. (2013). Henri Poincaré: A Scientific Biography. Princeton: Princeton Uni-
versity Press.

Hertz, H. (1894). The Principles of Mechanics Presented in a New Form. New York:
Dover. First English Trans. 1899, reprinted by Dover, 1955.

Horner, R. (1997). A pragmatist in Paris: Frédéric Rauh’s ‘Task of Dissolution’.
Journal of History of Ideas 58, 289–308.

Lalande, A. (1954). From Science and Hypothesis to Last Thoughts of H. Poincaré
(1854-1912). Journal of the History of Ideas 15, 596–598.

Langton, R. (1998). Kantian Humility: Our Ignorance of Things in Themselves.
Oxford: Oxford University Press.

Le Roy, E. (1899). Science et philosophie I and II. Revue de Métaphysique et de
Morale 7, 375–425 and 503–562.

Nye, M. J. (1979). The Boutroux Circle and Poincaré’s conventionalism. Journal
of the History of Ideas 40, 107–120.

Poincaré, H. (1887). Sur les hypothèses fondamentales de la géométrie. Bulletin de
la Société Mathématique de France 15, 203–216.

Poincaré, H. (1889). Leçons sur la théorie mathématique de la lumière. Volume 1
Cours de Physique Mathématique. Paris: Georges Carré.

Poincaré, H. (1890). Électricité et Optique: La Lumière et les Théories Électromagné-
tiques, 2nd Edition. Paris: Gathier-Villairs.

Poincaré, H. (1891). Les géométries non euclidiennes. Revue Générale des Sciences
Pures et Appliquées 2, 769–774. Reprinted as Chapter 3 of Science and Hypothe-
sis.

Poincaré, H. (1892). Non-Euclidian geometry. Nature 45, 404–407.

Poincaré, H. (1895). L’espace et la géométrie. Revue de Métaphysique et de Morale 3,
631–636. Reprinted as Chapter 4 of Science and Hypothesis.

Poincaré, H. (1897a). Les idées de Hertz sur la mécanique. Revue Génerale des
Science 8, 734–743. Reproduced in Ouevres de Henri Poincaré, VII, 231-250,
(1952) Paris: Gauthier-Villars.

Poincaré, H. (1897b). Réponse à quelques critiques. Revue de Métaphysique et de
Morale 5, 59–70.

Poincaré, H. (1898). On the foundations of geometry. Monist 9, 1–43.

Methode

issn: 2281-0498
138 Issue 4



Stathis Psillos

Poincaré, H. (1899). Des fondements de la géométrie: à propos d’un livre de M.
Russell. Revue de Métaphysique et de Morale 7, 251–279.

Poincaré, H. (1900a). Relations entre la physique expérimentale et de la physique
mathématique. In Rapports présentés au Congres International de physique de 1900,
pp. 1–29. also in Revue Generale des Sciences 11: 1163-1175 (1900), reprinted in
Science and Hypothesis, chapters 9 & 10.

Poincaré, H. (1900b). Sur les principes de la géométrie: réponse à M. Russell.
Revue de Métaphysique et de Morale 8, 73–86.

Poincaré, H. (1900c). Séance Générale: Logique et Histoire des Sciences. Revue de
Métaphysique et de Morale 8, 555–561.

Poincaré, H. (1901). Sur les principes de la mécanique. Logique et Histoire des Sci-
ences: Bibliotéque du Congres Internationale de Philosophie 3, 457–494. Reprinted
(with a few alterations) in Science and Hypothesis, chapters 6, 7 and 8.

Poincaré, H. (1902a). La Science et L’Hypothése. Paris: Flammarion. Reprinted in
1968.

Poincaré, H. (1902b). Sur la valeur objective de la science. Revue de Métaphysique et
de Morale 10, 263–293. Reprinted as chapters X and XI of The Value of Science.

Poincaré, H. (1903). Sur la diffraction des ondes electriques: a propos d’un article
de M. Macdonald. Proceedings of the Royal Society of London.

Poincaré, H. (1905). The principles of mathematical physics. Monist 15, 1–24.

Poincaré, H. (1913a). The Foundations of Science. New York: The Science Press.

Poincaré, H. (1913b). Mathematics and Science: Last Essays. New York: Dover.

Psillos, S. (1995). Poincaré’s conception of mechanical explanation. In J-L. Greffe,
G. Heinzmann and K. Lorenz (eds) (Ed.), Henri Poincaré: Science and Philoso-
phy. Berlin – Paris: Academie Verlag and Albert Blanchard.

Psillos, S. (2001). Is structural realism possible? Philosophy of Science 68, 13–24.

Psillos, S. (2009). Knowing the Structure of Nature. London: MacMillan-Palgrave.

Psillos, S. (2011). Moving molecules above the scientific horizon: On Perrin’s case
for realism. Journal for General Philosophy of Science 42, 339–363.

Psillos, S. and D. Christopoulou (2009). The a priori: Between conventions and
implicit definitions. In Kompa, Nikola and Nimtz, Christian and Suhm, Chris-
tian (Ed.), The A Priori and its Role in Philosophy, pp. 205–220. Mentis.

Methode

issn: 2281-0498
139 Issue 4



Stathis Psillos

Russell, B. (1899). Sur les axiomes de la géométrie. Revue de Métaphysique et de
Morale 7, 684–707.

Russell, B. (1905). Review of Science and Hypothesis by H. Poincaré. Mind 14,
412–418.

Russell, B. (1927). The Analysis of Matter. London: George Allen and Unwin.

Schmid, W. (1982). Poincaré and Lie groups. Bulletin of the American Mathematical
Society 6, 175–186.

Stump, D. (1989). Henri Poincaré’s philosophy of science. Studies in History and
Philosophy of Science 20, 335–186.

Stump, D. (2003). Defending conventions as functionally a priori knowledge. Phi-
losophy of Science 70, 1149–1060.

van Cleve, J. (1999). Themes From Kant. Oxford: Oxford University Press.

Worrall, J. (1989). Structural Realism: the Best of Both Worlds? Dialectica 43,
99–124.

Zahar, E. (1995). Poincaré’s structural realism and his logic of discovery. In J. J-
L.Greffe, G. Heinzmann, and L. K. (Eds.), Henri Poincaré: Science and Philoso-
phy. Berlin and Paris: Academie Verlag and Albert Blanchard.

Zahar, E. (2001). Poincaré’s Philosophy: From Conventionalism to Phenomenology.
Chicago and La Salle: Open Court.

Methode

issn: 2281-0498
140 Issue 4


	Introduction
	The case for geometrical conventionalism
	From hypotheses to conventions
	Conventional content vs empirical content
	Form vs matter

	The case for physical conventionalism
	The principles of mechanics
	Which principles of mechanics?
	From conventions to hypotheses
	Why the principles of mechanics?

	Geometrical conventionalism vs physical conventionalism?
	All conventions or no conventions?
	Federico Enriques
	Édouard Le Roy

	The case for relationism
	Mathematical representation
	The things themselves
	Boutroux’s relationism

	The objectivity of relations
	The history of science
	Pure Structuralism?

	Conclusions

